RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 5, Pages 659–674 (Mi mzm7678)

This article is cited in 1 paper

Analogs of the Luzin–Danzhua and Cantor–Lebesgue theorems for double trigonometric series

V. S. Panferov

M. V. Lomonosov Moscow State University

Abstract: Let $\|\cdot\|$ be some norm in $R^2$, $\Gamma$ be the unit sphere induced in $R^2$ by this norm, and $\{A_j\}$ a sequence of disjoint subsets of $R_+$ such that if $\nu\in A_j$, then $\nu\cdot\Gamma\cap Z^N\ne\varnothing$. For series of the form
$$ \sum_{j=1}^\infty\sum_{\|n\|\in A_j}c_ne^{2\pi i(n_1x_1+n_2x_2)} $$
analogs of the Luzin–Danzhu and Cantor–Lebesgue theorems are established.

UDC: 517.51

Received: 26.05.1975


 English version:
Mathematical Notes, 1975, 18:5, 983–992

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026