RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 3, Pages 411–420 (Mi mzm7669)

This article is cited in 3 papers

Spaces of analytic functions in a region with an angle

A. M. Shikhvatov


Abstract: In this paper we consider the space $A_p$ of analytic functions which are $p$-power integrable in a region with an angle. We find a set of numbers $p$ and $q$ ($1/p+1/q=1$) (which depend on the magnitude of the angle) for which the spaces $A_p$ and $A_q$ are mutually conjugate. In each of these spaces we introduce the orthonormal system
$$ e_n=\sqrt{(n+1)/\pi}\varphi'\varphi^n,\quad n=0,1,\dots $$
where $\varphi$ is the conformal mapping of the region onto the unit disc. We prove it is dense and determine when it will be a basis.

UDC: 517

Received: 28.02.1974


 English version:
Mathematical Notes, 1975, 18:3, 833–839

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026