RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 3, Pages 403–410 (Mi mzm7668)

Some questions on the univalence of functions of the class $\Sigma$

E. A. Shirokova

Kazan State University

Abstract: In this paper we give an example of two convex functions in $|\zeta|>1$ whose arithmetic mean is nonconvex. We calculate the radius of convexity of the sum of two convex functions; it is equal to $\sqrt{1+\sqrt2}$. For functions $F(\zeta)=\zeta+b_1/\zeta+\dots$, where $F'(\zeta)=f(\zeta)/\zeta$, if $f(\zeta)=\zeta+a_1/\zeta+\dots$ is univalent $|\zeta|>1$, then the radius of univalence is the root of the equation $4E(1/r)/K(1/r)+1/r^2=3$.

UDC: 517.5

Received: 24.09.1973


 English version:
Mathematical Notes, 1975, 18:3, 828–832

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026