RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 2, Pages 203–212 (Mi mzm7643)

Identities of semigroup algebras of completely 0-simple semigroups

O. I. Domanov

M. V. Lomonosov Moscow State University

Abstract: Let $H=M^0(G;I,\Delta;P)$ be a Rees semigroup of matrix type with sandwich matrix $P$ over a group $H^0$ with zero. If $F$ is a subgroup of $G$ of finite index and $X$ is a system of representatives of the left cosets of $F$ in $G$, then with the matrix $P$ there is associated in a natural way a matrix $P(F,X)$ over the group $F^0$ with zero. Our main result: the semigroup algebra $K[H]$ of $H$ over a field $K$ of characteristic 0 satisfies an identity if and only if $G$ has an Abelian subgroup $F$ of finite index and, for any $X$, the matrix $P(F,X)$ has finite determinant rank.

UDC: 51

Received: 20.06.1974


 English version:
Mathematical Notes, 1975, 18:2, 707–712

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026