RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 2, Pages 179–183 (Mi mzm7640)

This article is cited in 2 papers

Divergence of interpolation processes on sets of the second category

Al. A. Privalov


Abstract: $C([0,1])$ is the space of real continuous functions $f(x)$ on $[0,1]$ and $\omega(\delta)$ is a majorant of the modulus of continuity $\omega(f,\delta)$, satisfying the condition $\varlimsup\limits_{n\to\infty}\omega(1/n)\ln n=\infty$. A solution is given to a problem of S. B. Stechkin: for any matrix $\mathfrak M$ of interpolation points there exists an $f(x)\in C([0,1])$, $\omega(f,\delta)=o\{\omega(\delta)\}$ whose Lagrange interpolation process diverges on a set $\mathscr E$ of second category on $[0,1]$.

UDC: 517.5

Received: 21.06.1974


 English version:
Mathematical Notes, 1975, 18:2, 692–694

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026