RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 6, Pages 899–908 (Mi mzm7610)

Block sequences in nuclear Fréchet spaces with basis

P. B. Djakov

M. V. Lomonosov Moscow State University

Abstract: It is shown that a block sequence in a nuclear Fréchet space with a basis has a block extension if and only if the subspace it generates is complemented. In addition, a short proof is given of the following result of Dubinsky and Robinson: a nuclear Fréchet space is isomorphic to $\omega=R^N$, $N=\{1,2,\dots\}$ if it has a basis such that any block sequence with blocks of length $\le2$ of any permutation of this basis has a block extension. It is shown that a similar result holds without considering permutations of the basis if the length of the blocks is arbitrary.

UDC: 517

Received: 28.10.1974


 English version:
Mathematical Notes, 1975, 17:6, 541–546

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026