RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 3, Pages 475–484 (Mi mzm7565)

On the regularity of oricyclic coordinates

E. V. Shikin

M. V. Lomonosov Moscow State University

Abstract: Suppose there is defined in the plane a complete metric $W^-$, whose curvature $K$ satisfies the inequality $-k_2^2\le K\le -k_1^2$ ($k_1$ and $k_2$ are positive constants) and some regularity hypothesis. Then in the entire domain of definition of the metric $W^-$ one can construct regular oricyclic coordinates $(x,y)$, in which the line element has the form $ds^2=dx^2+B2(x,y)\cdot dy^2$.

Received: 21.11.1974


 English version:
Mathematical Notes, 1975, 17:3, 277–282

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026