RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 3, Pages 449–457 (Mi mzm7562)

This article is cited in 6 papers

Convex antiproximal sets in spaces $c_0$ and $c$

S. Kobzash


Abstract: In the note we prove that in a Banach space c there exists a closed bounded symmetric convex division ring $V_1$ such that for any $x\in c\setminus V_1$, $P_{V_1}(x)=\emptyset$ where $P_{V_1}$ is the metric projection onto $V_1$.

UDC: 513.88

Received: 25.12.1973


 English version:
Mathematical Notes, 1975, 17:3, 263–268

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026