RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 3, Pages 433–442 (Mi mzm7560)

This article is cited in 1 paper

Generalized valences

B. S. Stechkin

Steklov Mathematical Institute, Academy of Sciences of the USSR

Abstract: We have established that $V(S_p,q;G)$, namely, the collection of all those edges of an arbitrary $n$-vertex hypergraph $G$, whose intersections with set $S_p$, $p$ vertices, has a cardinality $q$, satisfies certain identity relations; in particular, if $v(S_p,q;G)=|V(S_p,q;G)|$, then
$$ v(S_p,q;G)=\sum_{i\ge0}(-1)^iC_{q+1}^q\sum_{S_{q+i}\subset S_p}v(S_{q+i},q+i;G). $$
As applications we derive two new combinatorial identities.

UDC: 519.1

Received: 17.04.1974


 English version:
Mathematical Notes, 1975, 17:3, 252–258

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026