RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 6, Pages 861–868 (Mi mzm7543)

A characterization of the groups $L_3(2^n)$

A. P. Il'inykh

Sverdlovsk State Pedagogical Institute

Abstract: This note is concerned with finite groups in which a Sylow two-subgroup $S$ has an elementary Abelian subgroup $E$ of order $2^{2n}$, $n\ge2$, such that $E=A\times Z(S)$, $|A|=2^n$, and $C_S(a)=E$ for any involution $a\in A$.
It is proved that a simple group satisfying this condition is isomorphic to $L_3(2^n)$.

UDC: 519.4

Received: 07.04.1975


 English version:
Mathematical Notes, 1975, 18:6, 1101–1104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026