RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 4, Pages 529–535 (Mi mzm7491)

On the properties of a class of integral operators in the space $L_p$

N. L. Vasilevskii

Odessa State University

Abstract: In the space $L_p(\mathscr L)$, $p>1$, we consider the operator $A\varphi=a\varphi+bS\varphi+cP\varphi+T\varphi$, where $a(t)$, $b(t)$, and $c(t)$ are piecewise-continuous functions on the contour $\mathscr L$, $T$ is a completely continuous operator,
$$ P_\varphi=\frac1{2\pi i}\int_\mathscr L\frac{\varphi(\tau)\,d\tau}{\tau-t-1},\quad S_\varphi=\frac1{\pi i}\int_{\mathscr L}\frac{\varphi(\tau)\,d\tau}{\tau-t}, $$
$\mathscr L$ is a closed convex Lyapunov contour having no rectilinear portions. We study the properties of the operator $P$ and we show that the Noether property conditions and the index of the operator $A$ do not depend on the term $c_P$.

UDC: 517.5

Received: 10.05.1972


 English version:
Mathematical Notes, 1974, 16:4, 905–909

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026