RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 3, Pages 461–466 (Mi mzm7482)

An inequality for a functional on aging distribution functions

O. P. Vinogradov

M. V. Lomonosov Moscow State University

Abstract: We prove an inequality for a functional on aging distribution functions $F(t)$, which makes it possible to obtain inequalities for $m_r=\int_0^\infty t^r\,dF(t)$. We show that if $\bigl[\frac{m_r}{r!}\bigr]^{r+1}=\bigl[{m_{r+1}}{(r+1)!}\bigr]^r$ for some $r\ge1$, then $F(t)=1-e^{-\lambda t}$; in addition we give upper and lower bounds for the integral $\int_0^\infty e^{-st}[1-F(t)]\,dt$ expressed in terms of $m_1$ and $m_2$.

UDC: 519.2

Received: 29.12.1972


 English version:
Mathematical Notes, 1974, 16:3, 863–866

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026