RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 3, Pages 365–374 (Mi mzm7469)

This article is cited in 1 paper

The product of linear nonhomogeneous forms

Kh. N. Narzullaev

Samarkand State University

Abstract: We show that for an arbitrary unimodular lattice $\Lambda$ of dimension $n$ and an arbitrary point $C=(c_1,c_2,\dots,c_n)\in R^n$ a point $Y=(y_1,y_2,\dots,y_n)\in\Lambda$ can be found and also a number h, satisfying the condition $1\le h\le2^{-n/2}\theta^{-1}+1$ ($0<\theta\le2^{-n/2}$), such that the inequality
$$ \prod_{i=1}^n|y_i+hc_i|<\theta $$
will be satisfied.

UDC: 511

Received: 24.12.1973


 English version:
Mathematical Notes, 1974, 16:3, 806–812

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026