RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 16, Issue 1, Pages 41–48 (Mi mzm7433)

This article is cited in 4 papers

When is the radical associated with a module a torsion?

A. I. Kashu

Mathematics Institute, Computer Center, Academy of Sciences of the Moldavian SSR

Abstract: For an arbitrary $R$-module $M$ we consider the radical (in the sense of Maranda)$\mathfrak G_M, namely, the largest radical among all radicals $\mathfrak G$, such that$\mathfrak G(M)=0$. We determine necessary and sufficient on $M$ in order for the radical $\mathfrak G_M$ to be a~torsion. In particular,$\mathfrak G_M$ is a~torsion if and only if $M$ is a pseudo-injective module.

UDC: 512

Received: 27.06.1973


 English version:
Mathematical Notes, 1974, 16:1, 608–612

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026