RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 5, Pages 711–718 (Mi mzm7398)

This article is cited in 2 papers

On the logarithmic derivative of a meromorphic function

A. S. Kolokol'nikov

Khar'kov State University, USSR

Abstract: We derive the following estimate for the quantity $m\bigl(r,\frac{f'}f\bigr)$ of the Nevanlinna theory of the distribution of values characterizing the growth of the logarithmic derivative of a meromorphic function $f(z)$, $f(0)=1$, $0<r<R<\infty$:
$$ m\bigl(r,\frac{f'}f\bigr)<\ln+\biggl[\frac{T(R,f)}r\Bigl(\frac R{R-r}\Bigr)^2\biggr]+6,0684. $$
This estimate is more accurate than that obtained earlier by Vu Ngoyan and I. V. Ostrovskii.

UDC: 517.5

Received: 07.05.1973


 English version:
Mathematical Notes, 1974, 15:5, 425–429

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026