RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 4, Pages 515–520 (Mi mzm7373)

Singularities of carleman type for subsystems of a trigonometric system

S. F. Lukomskii

Saratov State University

Abstract: We prove that for arbitrary $\varepsilon>0$ there exists a sequence of positive integers $\{n_k\}$ such that a) the system $\{\cos n_kX,\sin n_kX\}$ is a basis with respect to the $C[-\pi,\pi]$ norm in the closure of its linear hull, and b) a continuous function $f(x)$ belonging to the closure of the linear hull of the system can be found such that its Fourier coefficients $a_n$ and $b_n$ satisfy the relation
$$ \sum{n=1}^\infty|a_n|^{2-\varepsilon}+|b_n|^{2-\varepsilon}=\infty. $$


UDC: 517.5

Received: 13.07.1972


 English version:
Mathematical Notes, 1974, 15:4, 301–304

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026