RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 2, Pages 281–288 (Mi mzm7347)

This article is cited in 6 papers

Spaces with a Souslin and a shanin condition

B. È. Shapirovskii


Abstract: If $X$ is a regular hereditary Souslin space and $x\in X$ then either there exists a sequence $\{x_n:n=1,2,\dots\}\subset X\{x\}$ such that $x\in[{x_n:n=1,2,\dots}]$, or the pseudocharacter of $x$ in $X$ is no greater than countable. In other words, if $X$ is a hereditary Souslin bicompactum which is a $\chi$-space, then $X$ is a Frechet–Urysohn space.


 English version:
Mathematical Notes, 1974, 15:2, 161–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026