RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1974 Volume 15, Issue 1, Pages 73–78 (Mi mzm7320)

This article is cited in 1 paper

A remark concerning Pincherle bases

N. I. Nagnibida

Chernovtsy State University

Abstract: In this note we find sufficient conditions for uniqueness of expansion of any two functions $f(z)$ and $g(z)$ which are analytic in the circle $|z|<R$ ($0<R\le\infty$) in series
$$f(z)=\sum_{n=0}^\infty(a_nf_n(z)+b_ng_n(z))$$
and
$$ g(z)=\sum_{n=0}^\infty(a_n\lambda_nf_n(z)+b_n\mu_ng_n(z)),$$
which are convergent in the compact topology, where $\{f_n(z)\}_{n=0}^\infty$ and $\{g_n(z)\}_{n=0}^\infty$ infin are given sequences of functions which are analytic in the same circle while $\{\lambda_n\}_{n=0}^\infty$ and $\{\mu_n\}_{n=0}^\infty$ are fixed sequences of complex numbers. The assertion obtained here complements a previously known result of M. G. Khaplanov and Kh. R. Rakhmatov.

UDC: 517.5

Received: 13.03.1972


 English version:
Mathematical Notes, 1974, 15:1, 40–42

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026