RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 14, Issue 6, Pages 809–819 (Mi mzm7299)

$(i)$-Convergence and its application to a sequence of functions

V. I. Shirokov

Arzamas State Pedagogical Institute

Abstract: Let $(x_\alpha)_{\alpha\in A}$ , where $A$ is a directed set containing cofinal chains — a generalized sequence in a complete chain. It is established that every such sequence contains a monotonic cofinal sub-sequence. For a monotonically increasing (decreasing) bounded sequence $(x_\alpha)_{\alpha\in A}$, by definition, we put $(i)-\lim\limits_{\alpha\in A}x_\alpha=\sup\limits_{\alpha\in A}(x_\alpha)\cdot((i)-\lim\limits_{\alpha\in A}x_\alpha=\inf\limits_{\alpha\in A}(x_\alpha))$. For an arbitrary sequence $(x_\alpha)_\alpha\in A(i)$ the $(i)$-limit is defined as the common $(i)$-limit of its monotonic cofinal sub-sequences. The properties of $(i)$-convergence and some of its applications to generalized sequences of mappings are discussed.

UDC: 517.5


 English version:
Mathematical Notes, 1973, 14:6, 1023–1028

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026