RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 14, Issue 4, Pages 573–576 (Mi mzm7291)

This article is cited in 1 paper

The existence of probability measures with specified projections

V. N. Sudakov

Leningrad branch of V. A. Steklov Mathematical Institute of USSR Academy of Sciences

Abstract: Let $X$ and $Y$ be locally compact $\sigma$-compact topological spaces, $F\subset X\times Y$ is closed, and $P(F)$ is the set of all Borel probability measures on $F$. For us to find, for the pair of probability measures $(\mu_X,\mu_Y)\in P(X)\times P(Y)$, a probability measure $\mu\in P(F)$ such that $\mu_X=\mu\pi_X^{-1}$, $\mu_Y=\mu\pi_Y{-1}$ it is necessary and sufficient that, for any pair of Borel sets $A\in X$, $B\subset Y$ for which $(A\times B)\cap F=\emptyset$, the condition $\mu_XA+\mu_YB\le1$ holds.

UDC: 519.2

Received: 18.10.1971


 English version:
Mathematical Notes, 1973, 14:4, 886–888

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026