RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 14, Issue 4, Pages 487–492 (Mi mzm7279)

Asymptote of the eigenvalues of a completely continuous operator

K. Kh. Boimatov

M. V. Lomonosov Moscow State University

Abstract: It is proved that if $\varphi(x)$ is the majorant of the $s$-numbers of a completely continuous operator $A$ (i.e., $\varphi'(x)\le0$, $s_n(A)\le\varphi(n)$) and if there are found numbers $\rho\in[0,1]$ and $r_0>0$ such that $r^\rho\varphi'(r)/\varphi(r)$ will be monotonic in $(r_0,\infty)$, then for some $\alpha>0$, $\varphi(\alpha x)$ will be a majorant of the eigenvalues of $A$.

UDC: 517.43

Received: 14.01.1971


 English version:
Mathematical Notes, 1973, 14:4, 837–839

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026