RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 14, Issue 2, Pages 261–266 (Mi mzm7256)

This article is cited in 1 paper

On regular embedding integrally in $R^3$ of metrics of class $C^4$ of negative curvature

E. V. Shikin

M. V. Lomonosov Moscow State University

Abstract: On the $x_0y$ plane let there be specified a complete metric of negative curvature $K$ by means of the line element
$$ds^2=dx^2+B^2(x,y)\,dy^2$$
, and, in the strip $\Pi_a=\{0\le x\le a,-\infty<y<+\infty\}$, let the following conditions be met: $B(x,y)$ is a $C^4$-bounded function $B\ge\lambda>0$, $K\le-\mu^2<0$ ($\lambda$ and $\mu$ are constants). Then, the metric in strip $\Pi_a$ is embedded in $R^3$ by means of a surface of class C3.

UDC: 513.73

Received: 27.02.1973


 English version:
Mathematical Notes, 1973, 14:2, 707–710

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026