RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 2, Pages 255–263 (Mi mzm7244)

There exist no Ramanujan congruences $\mod691^2$

A. A. Panchishkin

M. V. Lomonosov Moscow State University, USSR

Abstract: Let $\tau(n)$ be Ramanujan's function,
$$ x\prod_{m=1}^\infty(1-x^m)^{24}=\sum_{n=1}^\infty\tau(n)x^n. $$
In this paper it is shown that the Ramanujan congruence $\tau(n)\equiv\sum_{d/n}d^{11}\bmod691$ cannot be improved $\bmod691^2$. The following result is proved: for arbitrary $r$, $s\bmod691$ the set of primes such that $p\equiv r\bmod691$, $\tau(p)\equiv p^{11}+1+691\cdot s\bmod691^2$ has positive density.

UDC: 511

Received: 30.04.1974


 English version:
Mathematical Notes, 1975, 17:2, 148–153

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026