RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 2, Pages 245–254 (Mi mzm7243)

Poincaré series

G. I. Gusev

Saratov State University, USSR

Abstract: Let $N_\alpha$ denote the number of solutions to the congruence $F(x_i,\dots,x_m)\equiv\pmod{p^\alpha}$ for a polynomial $F(x_i,\dots,x_m)$ with integral $p$-adic coefficients. We examine the series $\varphi(t)=\sum_{\alpha=0}^\infty N_\alpha t^\alpha$ called the Poincaré series for the polynomial $F$. In this work we prove the rationality of the series $\varphi(t)$ for a class of isometrically equivalent polynomials of $m$ variables, $m\ge2$, containing the sum of two forms $\varphi_n(x,y)+\varphi_{n+1}(x,y)$ respectively of degrees $n$ and $n+1$, $n\ge2$. In particular the Poincaré series for any third degree polynomial $F_3(x,y)$ (over the set of unknowns) with integral $p$-adic coefficients is a rational function of $t$.

UDC: 512

Received: 02.04.1973


 English version:
Mathematical Notes, 1975, 17:2, 142–147

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026