RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 17, Issue 2, Pages 219–230 (Mi mzm7241)

Generalization of some classical inequalities in the theory of orthogonal series

F. Móricz

V. A. Steklov Mathematical Institute, Academy of Sciences of the USSR, USSR

Abstract: Let $\{X_i\}_{-\infty}^\infty$ be a sequence of random variables, $E(X_i)\equiv0$. If $\nu\ge1$, estimates for the $\nu$-th moments $\max _{1\le k\le n}\bigl|\sum_{a+1}^{a+k}X_i\bigr|$ can be derived from known estimates $\bigl|\sum_{a+1}^{a+n}X_i\bigr|$ of the $\nu$-th moment. Here we generalized the Men'shov–Rademacher inequality for $\nu=2$ for orthonormal $X_i$, to the case $\nu\ge1$ and dependent random variables. The Men'shov–Payley (inequality $\nu>2$ for orthonormal $X_i$) is generalized for $\nu>2$ to general random variables. A theorem is also proved that contains both the Erdös–Stechkin theorem and Serfling's theorem with $\nu>2$ for dependent random variables.

UDC: 517

Received: 29.04.1973


 English version:
Mathematical Notes, 1975, 17:2, 127–133

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026