RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 13, Issue 3, Pages 373–384 (Mi mzm7133)

A boundary value problem for a differential equation of second order

B. V. Verbitskii

M. V. Lomonosov Moscow State University

Abstract: We find the spectrum and prove a theorem on the expansion of an arbitrary function satisfying certain smoothness conditions in terms of the root functions of a boundary value problem of the type
\begin{gather*} -y''+q(x)+\frac a{x^2}y=\lambda y,\quad y(0)=0, \\ M(\lambda)y(a)+N(\lambda)y(b)=0, \end{gather*}
where $0<a<b<\infty$, $a\ge0$, $M(\lambda)$ and $N(\lambda)$ are polynomials with complex coefficients, and $q(x)$ is a sufficiently smooth complex-valued function.

UDC: 517.9

Received: 12.04.1972


 English version:
Mathematical Notes, 1973, 13:3, 228–234

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026