RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 10, Issue 1, Pages 57–62 (Mi mzm7067)

Theorem concerning analytic continuation

A. M. Lukatskii

M. V. Lomonosov Moscow State University

Abstract: A. I. Markushevich obtained the following representation of a function in its holomorphicity star with a sequence $\{m_\nu\}$, for which $m_{\nu+1}/m_\nu\to\infty$:
$$f(z)=\lim\limits_{\nu\to\infty}\left\{\sum_0^{m_{2\nu}}\theta_k\frac{f^{(k)}(z_0)}{k!}(z-z_0)^k+\sum_0^{m_{2\nu-1}}(1-\theta_k)\frac{f^{(k)}(z_0)}{k!}(z-z_0)^k\right\}$$
. Here it is proved that this condition is necessary; more precisely, $\overline{\lim\limits_{\nu\to\infty}}\frac{m_{\nu+1}}{m_\nu}=\infty$ . This result is derived from certain properties of over-convergent power series.

UDC: 517.5

Received: 07.04.1970


 English version:
Mathematical Notes, 1971, 10:1, 459–462

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026