RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 10, Issue 1, Pages 53–56 (Mi mzm7066)

This article is cited in 3 papers

An extremal property of outer functions

B. I. Korenblum

Kiev State Technical University of Construction and Architecture

Abstract: Our main result is the following: if $f(z)$ is in the space $H^2$, and $F(z)$ is its outer part, then $\|F^{(n)}\|_{H^2}\le\|f^{(n)}\|_{H^2}$ $(n=1,2,\dots)$, the left side being finite if the right side is finite. Under certain essential restrictions, this inequality was proved by B.I. Korenblyum and V.S. Korolevich [1].

UDC: 517.5

Received: 19.06.1970


 English version:
Mathematical Notes, 1971, 10:1, 456–458

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026