RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 69, Issue 6, Pages 919–924 (Mi mzm706)

This article is cited in 4 papers

On the Problem of Describing Sequences of Best Trigonometric Rational Approximations

A. P. Starovoitov

Francisk Skorina Gomel State University

Abstract: For a strictly decreasing sequence $\{a_n\}^\infty_{n=0}$ of nonnegative real numbers converging to zero, we construct a continuous $2\pi$-periodic function $f$ such that $R^T_n(f)=a_n$, $n=0,1,2,\dots$, where $R^T_n(f)$ are best approximations of the function $f$ in uniform norm by trigonometric rational functions of degree at most $n$.

UDC: 517.51+517.53

Received: 03.04.2000

DOI: 10.4213/mzm706


 English version:
Mathematical Notes, 2001, 69:6, 839–844

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026