RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 9, Issue 5, Pages 483–494 (Mi mzm7033)

This article is cited in 1 paper

Accurate estimates of deviations of spline approximations to classes of differentiable functions

V. L. Velikin, N. P. Korneichuk

Dnepropetrovsk State University

Abstract: We derive the approximation on $[0,1]$ of functions $f(x)$ by interpolating spline-functions $s_r(f;x)$ of degree $2r+1$ and defect $r+1$ ($r=1,2,\dots$). Exact estimates for $|f(x)-s_r(f;x)|$ and $\|f(x)-s_r(f;x)\|_C$ on the class $W^mH_\omega$ for $m=1$, $r=1,2,\dots$ and $m=2,3$, $r=2$ for the case of convex $\omega(t)$, are derived.

UDC: 517.5

Received: 06.04.1970


 English version:
Mathematical Notes, 1971, 9:5, 278–284

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026