RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 9, Issue 4, Pages 391–399 (Mi mzm7018)

A discreteness criterion for the spectrum of a quasielliptic operator

M. G. Gimadislamov

Bashkir State University

Abstract: For the spectrum of the operator
$$u=\sum_{j=1}^n{(-1)^{m_j}D_j^{2m_j}u+q(x)u},$$
to be discrete, where the mj are arbitrary positive integers such that $\sum_{j=1}^n{\frac1{2m_j}<1}$, and $q(x)\ge 1$, it is necessary and sufficient that $\int\limits_K{q(x)dx\to\infty}$ , when the cube $K$ tends to infinity while preserving its dimensions.

UDC: 513.88

Received: 24.12.1969


 English version:
Mathematical Notes, 1971, 9:4, 225–229

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026