RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1970 Volume 7, Issue 1, Pages 7–18 (Mi mzm6988)

This article is cited in 8 papers

Unbounded divergence of Fourier series of continuous functions

V. V. Buzdalin

Patrice Lumumba Peoples Friendship University

Abstract: For any given set $E\subset[0,\,2\pi)$, of measure zero, a function $f(t)\in C(0,\,2\pi)$, is constructed whose Fourier series is unboundedly divergent on $E$. If $E$ is closed, there is a function $\varphi(t)\in C(0,2\pi)$, whose Fourier series diverges unboundedly on $E$ and converges on $[0,2\pi)\setminus E$.

UDC: 517.5

Received: 05.05.1969


 English version:
Mathematical Notes, 1970, 7:1, 5–12

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026