RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 6, Issue 2, Pages 233–236 (Mi mzm6927)

Diameter of the set of midpoints of chords of a bounded closed set

Yu. G. Dutkevich

Leningrad State University named after A. A. Zhdanov

Abstract: The estimate is obtained for the diameter $d(S_n(a))$ of the set $S_n(a)$ of midpoints of chords of length $\ge a$ ($0<a\le1$) of a closed set of diameter 1 in the Euclidean space $E^n$, namely
$$ d(S_n(a))\leqslant\begin{cases} 1-a^2/2,&n=2, \\ \sqrt{1-a^2/2},&n\geqslant3, \end{cases} $$
and it is shown that the inequality cannot be improved.

UDC: 513.78

Received: 16.09.1968


 English version:
Mathematical Notes, 1969, 6:2, 593–595

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026