RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 5, Issue 3, Pages 373–380 (Mi mzm6857)

This article is cited in 3 papers

Estimation of a sum along an algebraic curve

G. I. Perel'muter

Saratov State University named after N. G. Chernyshevsky

Abstract: Let $\Gamma$ be an algebraic curve determined over a finite field $k=[q]$; $e$$\chi$ are subsidiary additive and multiplicative characters of the field $k$; $\varphi$$\psi$ are functions in $\Gamma$ determined over $k$ and satisfying some natural conditions. If $P$ passes through the points of curve $\Gamma$, rational over $k$, then
$$ \biggl|\sum_{P\in\Gamma}e(\varphi(P))\chi(\psi(P))\biggr|\leqslant C\sqrt q $$
where constant $C$ depends only on the powers of $\Gamma,\varphi,\psi$.

UDC: 513.6

Received: 17.05.1968


 English version:
Mathematical Notes, 1969, 5:3, 223–227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026