RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 4, Issue 2, Pages 233–238 (Mi mzm6765)

This article is cited in 41 papers

Kolmogorov-type inequalities and the best formulas for numerical differentiation

L. V. Taikov

V. A. Steklov Institute of Mathematics, Sverdlovsk Branch of the Academy of Sciences of USSR

Abstract: For a certain class of complex-valued functions $f(x)$, $-\infty<x<\infty$, is found the best approximation
$$ u_N=\inf_{\|A\|\le N}\sup_{\|f^{(n)}\|_{L_2}\le1}\|f^{(k)}-A(f)\|C $$
of a differential operator by linear operators $A$ with the norm $\|A\|_{L_2}^C\le N$, $N>0$. Using the value $u_N$, the smallest constant $Q$ in the inequality
$$ \|f^{(k)}\|_Q\le Q\|f\|_{L_2}^\alpha\|f^{(n)}\|^\beta_{L_2} $$
is found.

UDC: 517.5

Received: 19.12.1967


 English version:
Mathematical Notes, 1968, 4:2, 631–634

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026