RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 4, Issue 2, Pages 169–172 (Mi mzm6758)

Some asymptotic spectral properties of singular operators

Yu. N. Sudarev

M. V. Lomonosov Moscow State University

Abstract: A class of uniformly elliptic, positive operators in $R^n$ with discrete spectrum is considered for which the coefficients of the derivatives of even order and the free term increase at the same rate, while the other coefficients play a subordinate role. The first term of the asymptotic expansion of the spectral function and $N(\lambda)$ is found for such operators; here $N(\lambda)=\sum_{\lambda_n\leqslant\lambda}1$, where the $\lambda_n$ are the eigenvalues of the operator.

UDC: 513.88

Received: 11.12.1967


 English version:
Mathematical Notes, 1968, 4:2, 592–594

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026