RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 4, Issue 1, Pages 11–20 (Mi mzm6738)

Methods of summation and best approximation

L. P. Vlasov

V. A. Steklov Institute of Mathematics, Sverdlovsk Branch of the Academy of Sciences of USSR

Abstract: Let $\lambda=\{\lambda_k^n\}$ be a triangular method of summation, $f\in L_p$ $(1\le p\le\infty)$,
$$ U_n(f,x,\lambda)=\frac{a_0}2+\sum_{k=1}^n\lambda_k^n(a_k\cos kx+b_k\sin kx). $$
Consideration is given to the problem of estimating the deviations $\|f-U_n(f,\lambda)\|_{L_p}$ in terms of a¨best approximation $E_n(f)_{L_p}$ in abstract form (for a sequence of projectors in a Banach space). Various generalizations of known inequalities are obtained.

UDC: 517.5

Received: 04.09.1967


 English version:
Mathematical Notes, 1968, 4:1, 493–499

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026