RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 3, Issue 3, Pages 237–246 (Mi mzm6674)

This article is cited in 1 paper

Bases formed of successive primitives

Yu. A. Kaz'min

M. V. Lomonosov Moscow State University

Abstract: Necessary and sufficient conditions are found in order for the system of successive primitives
$$ \biggl\{F_n(z)=\sum_{k=0}^\infty\frac{a+_{k-n}}{k!}z^k\biggr\},\quad n=0,1,2,\dots, $$
generated by the integer-valued function $F_0(z)=\sum_{k=0}^\infty\frac{a_{k_{zk}}}{k!}$ growth no higher than first order of the normal type $\sigma(F_0(z)\in[1,\sigma]$, to form a quasi-power basis in the class $[1;\sigma]$.

UDC: 517.5

Received: 30.09.1967


 English version:
Mathematical Notes, 1968, 3:3, 153–158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026