RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 3, Issue 2, Pages 171–178 (Mi mzm6664)

This article is cited in 1 paper

Increasing solutions of linear second-order equations with nonnegative characteristic form

A. S. Kalashnikov

M. V. Lomonosov Moscow State University

Abstract: In a layer $H\{0<t\le T,\ x\in R^n\}$ we consider a linear second-order parabolic equation that degenerates on an arbitrary subset $\overline H$. It is assumed that the coefficient of the time derivative has a zero of sufficiently high order on the hyperplane $t=0$; as a consequence, the Cauchy problem will be unsolvable. The exact bounds are obtained of the permissible growth of the sought-for function when $|x|\to\infty$, ensuring a single-valued solution of the problem without initial data.

UDC: 517.9

Received: 06.09.1967


 English version:
Mathematical Notes, 1968, 3:2, 110–114

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026