RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1968 Volume 3, Issue 1, Pages 71–76 (Mi mzm6653)

The complementation of an additive measure up to $\sigma$-additivity by means of an extension of the space

D. N. Dudin

M. V. Lomonosov Moscow State University

Abstract: For an algebra $\mathfrak A$ of subsets of a set X there is constructed a set $\widetilde X\supset X$ and an algebra of its subsets so that the mapping $\widetilde A\to A=\mathop\mathfrak A\limits^\sim\cap A$ is a one-to-one correspondence between $\mathop\mathfrak A\limits^\sim$ and $\mathfrak A$ and for each additive measure $M$ on $\mathfrak A$ the measure $\widetilde\mu$ on $\mathop\mathfrak A\limits^\sim$ defined by the equation $\widetilde\mu(\widetilde A)=\mu(A)$ is countably additive.

UDC: 517.5

Received: 14.06.1967


 English version:
Mathematical Notes, 1968, 3:1, 42–44

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026