RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 90, Issue 1, Pages 137–142 (Mi mzm6570)

This article is cited in 1 paper

Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$

V. E. Slyusarchuk

Ukranian State Academy of Water Economy

Abstract: We introduce the notion of $\varepsilon$-unique bounded solution to the nonlinear differential equation $x'=f(x)-h(t)$, where $f\colon\mathbb R\to\mathbb R$ is a continuous function and $h(t)$ is an arbitrary continuous function bounded on $\mathbb R$. We derive necessary and sufficient conditions for the existence and $\varepsilon$-uniqueness of bounded solutions to this equation.

Keywords: nonlinear differential equation, bounded solution, $\varepsilon$-uniqueness, Banach space.

UDC: 517.988.63

Received: 15.08.2008

DOI: 10.4213/mzm6570


 English version:
Mathematical Notes, 2011, 90:1, 136–141

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026