RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 84, Issue 5, Pages 755–762 (Mi mzm6359)

On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions

A. V. Pokrovskii

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: For a continuous $2\pi$-periodic real-valued function $K(t)$, whose amplitudes decrease as a geometric progression with a denominator $q\in(0,1)$ starting from a given number $n\in\mathbb{N}$, we find sharp upper bounds for $q$ ensuring that $K(t)$ satisfies the Nagy condition $N_n^*$.

Keywords: best approximation, $2\pi$-periodic analytic function, convolution class, trigonometric polynomial, geometric progression, Nagy condition.

UDC: 517.51

Received: 22.05.2007

DOI: 10.4213/mzm6359


 English version:
Mathematical Notes, 2008, 84:5, 703–709

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026