RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 75, Issue 5, Pages 652–662 (Mi mzm61)

This article is cited in 4 papers

Normal Matrices and an Extension of Malyshev"s Formula

Kh. D. Ikramov, A. M. Nazari

M. V. Lomonosov Moscow State University

Abstract: Let $A$ be a complex matrix of order $n$ with $n\ge3$. We associate with $A$ the $(3n\times 3n)$ matrix
$$ Q(\gamma)=\begin{pmatrix} A&\gamma_1I_n&\gamma_3I_n \\0&A&\gamma_2I_n \\0&0&A \end{pmatrix}, $$
where $\gamma_1,\gamma_2,\gamma_3$ are scalar parameters and $\gamma=(\gamma_1,\gamma_2,\gamma_3)$. Let $\sigma_i$, $1\le i\le3n$, be the singular values of $Q(\gamma)$ in the decreasing order. We prove that, for a normal matrix $A$, its 2-norm distance from the set $\mathscr M$ of matrices with a zero eigenvalue of multiplicity at least 3 is equal to
$$ \max_{\gamma_1,\gamma_2\ge0,\gamma_3\in\mathbb C} \sigma_{3n-2}(Q(\gamma)). $$
This fact is a refinement (for normal matrices) of Malyshev"s formula for the 2-norm distance from an arbitrary $(n\times n)$ matrix $A$ to the set of $(n\times n)$ matrices with a multiple zero eigenvalue.

UDC: 519.6

Received: 13.05.2003

DOI: 10.4213/mzm61


 English version:
Mathematical Notes, 2004, 75:5, 608–616

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026