RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 69, Issue 3, Pages 383–401 (Mi mzm512)

The Ingham Divisor Problem on the Set of Numbers without $k$h Powers

T. K. Ikonnikova

Moscow State Pedagogical University

Abstract: Suppose that $k$ and $l$ are integers such that $k\ge2$ and $l\ge2$ , $M_k$ is a set of numbers without $k$th powers, and $\tau(n)=\sum_{d\mid n}1$. In this paper, we obtain asymptotic estimates of the sums $\sum\tau(n)\tau(n+1)$ over $n\le x$, $n\in M_k$.

UDC: 512.542

Received: 21.06.2000

DOI: 10.4213/mzm512


 English version:
Mathematical Notes, 2001, 69:3, 347–363

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026