RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 5, Pages 778–791 (Mi mzm5073)

This article is cited in 11 papers

Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings

V. De Filippis, F. Rania

University of Messina, Italy

Abstract: Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ the extended centroid of $R$, and $L$ a noncentral Lie ideal of $R$. If $F$ and $G$ are generalized derivations of $R$ and $k\ge1$ a fixed integer such that $[F(x),x]_kx-x[G(x),x]_k=0$ for any $x\in L$, then one of the following holds: \end{itemize}

Keywords: prime ring, derivation, generalized derivation, utumi quotient ring, differential identity, (hyper-)centralizing map, generalized polynomial identity.

UDC: 517

Received: 11.05.2010

DOI: 10.4213/mzm5073


 English version:
Mathematical Notes, 2010, 88:5, 748–758

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026