RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 69, Issue 1, Pages 92–99 (Mi mzm486)

This article is cited in 2 papers

On the Univalence of an Integral on Subclasses of Meromorphic Functions

I. R. Nezhmetdinov

Kazan State University

Abstract: We study the integral operator $P_\lambda[f](\zeta)=\int_{\zeta_0}^\zeta\bigl(f'(t)\bigr)^\lambda dt$, $|\zeta|>1$, acting on the class $\Sigma$ of functions meromorphic and univalent in the exterior of the unit disk. We refine the ranges of the parameter $\lambda$ for which the operator preserves univalence either on $\Sigma$ or on its subclasses consisting of convex functions. As a consequence, a two-sided estimate is deduced for the separating constant in the sufficient condition for the univalent solvability of exterior inverse boundary-value problems.

UDC: 517.546

Received: 20.09.1999

DOI: 10.4213/mzm486


 English version:
Mathematical Notes, 2001, 69:1, 81–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026