RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 69, Issue 1, Pages 31–35 (Mi mzm481)

This article is cited in 2 papers

On $p$-Reducibility of Computable Numerations

A. N. Degtev

Tyumen State University

Abstract: It is proved that if $\nu_1$ and $\nu_2$ are two computable numerations of a certain family of recursively enumerable sets such that $\nu_2<_p\nu_1$ and $\nu_1$ is not a $p$-principal numeration, then there exists a computable numeration $\nu_0$ p-incomparable with $\nu_1$ such that $\nu_2<_p\nu_0$. This yields the description of injective objects and the absence of numerated sets projective in the category $K_p$ conforming to $p$-reducibility of computable numeration.

UDC: 517.11

Received: 25.05.1999
Revised: 03.03.2000

DOI: 10.4213/mzm481


 English version:
Mathematical Notes, 2001, 69:1, 28–31

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026