RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 69, Issue 1, Pages 18–30 (Mi mzm480)

This article is cited in 4 papers

Vekua Integral Operators on Riemann Surfaces

I. A. Bikchantaev

Kazan State University

Abstract: On an arbitrary (in general, noncompact) Riemann surface $R$, we study integral operators $\operatorname{T}$ and $\Pi$ analogous to the operators introduced by Vekua in his theory of generalized analytic functions. By way of application, we obtain necessary and sufficient conditions for the solvability of the nonhomogeneous Cauchy–Riemann equation $\overline\partial f=F$ in the class of functions $f$ exhibiting $\Lambda_0$-behavior in the vicinity of the ideal boundary of $R$.

UDC: 517.968.25+517.54

Received: 04.02.2000

DOI: 10.4213/mzm480


 English version:
Mathematical Notes, 2001, 69:1, 17–27

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026