RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1992 Volume 52, Issue 1, Pages 51–56 (Mi mzm4654)

Multiple solvability of certain elliptic problems with critical nonlinearity exponents

I. A. Kuzin

Branch for Theoretical Problems, Russian Academy of Sciences

Abstract: It is proved that the problem
$$ \sum_{i=1}^N\nabla_i(|\nabla u|^{p-2}\nabla_iu)+|u|^{p^*-2}u+\lambda|u|^{q-2}u=0 \text{ in } \Omega, \quad u=0 \text{ on } \partial\Omega, $$
where $\Omega\subset\mathbf{R}^N$ a singly-connected region with an “odd” boundary, $N>p$, and $p^*=Np/(N-p)$ is a critical Sobolev exponent, has, under the appropriate conditions on $\lambda$, $q$ and $N$, no less than $(2N+2)$ nontrivial solutions in $\mathring{W}_{p^1}(\Omega)$.

UDC: 517

Received: 13.11.1991


 English version:
Mathematical Notes, 1992, 52:1, 668–672

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026