RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 86, Issue 6, Pages 903–911 (Mi mzm4614)

The Limit of Measures Generated by Diffusions with Unboundedly Increasing Drift

P. Yu. Tarasenko

M. V. Lomonosov Moscow State University

Abstract: We prove that a sequence of diffusion processes in $\mathbb R^n$ that are Brownian motions with drift unboundedly increasing in modulus and directed to a manifold converges in distribution to the Brownian motion on the manifold.

Keywords: Brownian motion, unboundedly increasing drift, Riemannian manifold, Lipschitz condition, Laplace–Beltrami operator, semimartingale, Itô differential.

UDC: 519.218.1+519.216.7+517.987.1

Received: 20.02.2008
Revised: 20.01.2009

DOI: 10.4213/mzm4614


 English version:
Mathematical Notes, 2009, 86:6, 842–849

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026